59. Complexes of 2,2',2"-Nitrilotriphenol

Part 2

Crystal and Molecular Structures of Three Boron Complexes

by Edgar Müller¹) and Hans-Beat Bürgi²)*

Laboratorium für Anorganische Chemie, ETH, CH-8092 Zürich

(6.II.87)

Crystal and molecular structures of a complex between B(III) and the tripod ligand 2,2',2"-nitrilotriphenol as well as of its pyridine and quinuclidine adducts are presented. The 2,2',2"-nitrilotriphenyl borate (III) molecule shows a strained, tricyclic chelate system with a central N–B donor-acceptor bond of 1.681(5) Å. In the adducts with pyridine (IV) and quinuclidine (III-quin), this bond is broken, the N-atom inverts and is pushed out of the coordination sphere (B–N_{intern} = 2.82 Å for Py and 2.85 Å for quin), and a new bond is formed between the boron atom and the external nucleophile (B–N_{extern} = 1.631 Å for Py and 1.643 Å for quin).

Introduction. – In [1], we have reported on the temperature-dependent NMR spectra and structures of two complexes of B(III) with 2,2',2"-nitrilotriphenol, namely III and IV. The results obtained were interpreted in terms of a nucleophilic substitution reaction III + $Py \rightleftharpoons IV$. In this paper, we report details of the X-ray structure determinations of III, IV, and III-quin (quin = quinuclidine).

The three complexes were obtained from reactions of trimethyl borate with solutions of 2,2',2"-nitrilotriphenol in MeCN: III forms, when no additional reagents are present; in the presence of an excess of pyridine or quinuclidine [1] [2], the corresponding adducts IV and III-quin, respectively, are obtained.

Experimental. – Crystals for X-Ray Structure Determinations. The three compounds were synthesized as described previously [1] [2]. Crystals suitable for X-ray work were grown as follows.

III: 0.5 g of 2,2',2"-nitrilotriphenol was dissolved in 10 ml of dry DMSO, 0.5 g of $B(OCH_3)_3$ was added, and the soln. kept overnight at 80°. The crystals deposited were isolated, washed with Et_2O , and dried *in vacuo*.

IV: 200 mg of crude IV (or III) was dissolved in a sufficient amount of dry pyridine (about 2 ml) at 90°, and the soln. was slowly cooled to r.t. at a rate of $-10^{\circ}/day$.

III-quin: The crystals obtained from the synthesis were used directly [1].

X-Ray Data Collections. Table 1 summarizes crystal data and provides some details of data collection and structure refinement. Other relevant information: Lorentz and polarization corrections, direct methods (MUL-TAN 77 [3]); weighted least-squares refinements in the XRAY 72 [4] program system, weighting scheme of Dunitz and Seiler [5]. Real and imaginary scattering factors for neutral atoms [6]; all atoms refined; B, C, N, and O anisotropically.

Present address: Département de chimie minérale, analytique et appliquée, Université de Genève, 30, quai Ernest-Ansermet, CH-1211 Genève 4.

²) Present address: Laboratorium f
ür chemische und mineralogische Kristallographie, Universit
ät Bern, Freiestr. 3, CH-3012 Bern.

	111	IV	III-quin
Formula	$C_{18}H_{12}O_3BN$	C ₂₃ H ₁₇ O ₃ BN ₂	C ₂₅ H ₂₅ O ₃ BN ₂
Space group	monoclinic	orthorhombic	triclinic
	$P2_1/n$	Pbca	$P\overline{1}$
u [Å]	6.780(3)	14.745(3)	9.805(2)
<i>b</i> [Å]	13.626(5)	15.354(3)	10.570(4)
c [Å]	15.706(4)	16.419(3)	11.352(4)
α[°]	90.0	90.0	85.73(3)
β [°]	90.0	90.0	67.80(3)
2 [°]	99.32(3)	90.0	71.91(2)
$V[Å^3]$	1431.9	3717.3	1034
Z	4	8	2
Crystal size [mm]	$0.3 \times 0.3 \times 0.2$	$0.2 \times 0.2 \times 0.2$	$0.2 \times 0.2 \times 0.2$
Radiation	ΜοΚα	$(\lambda = 0.71069 \text{ Å})$	
Theta max	25°	25°	25°
Scan type	$\omega/2\theta$	ω	$\omega/2\theta$
Total scan angle/reflection	1.5°	1.2°	1.5°
Max. measuring time/reflection	60 s	150 s	90 s
No. of independent reflections	2506	3281	3631
No. of reflections used in refinements	$1538 (> \sigma_F)$	1877 (> $3\sigma_F$)	2378 ($> \sigma_F$)
No. of variables	257	331	382
Final $R(R_w)^a$)	0.050 (0.047)	0.045 (0.038)	0.077 (0.042)
Weighting, A^{a})	10	10	8
^a) $w = 1/\sigma^2(F) \times \exp(2 \times \mathbf{A} \times (\sin\theta/\lambda)^2)$	[5].		

Table 1. Crystal Data and Parameters Used in Data Collection and Structure Determination

Results and Discussion. – Positional and equivalent isotropic displacement parameters are given in *Tables 2, 3,* and 4. Anisotropic displacement parameters have been given in [2].

Atomic numbering is indicated in *Fig. 1*. Chemically equivalent bond distances and angles have been averaged with respect to the non-crystallographic threefold axis. Values for the bi- and tricycloundecane cages are reported in *Table 5*. Additional geometric information and stereodiagrams of molecular packing are given in [2].

Complex III shows a tricyclo[3.3.3.0]undecane skeleton with approximate C_{3e} symmetry and a central N \rightarrow B dative bond (1.681 Å). In IV and III-quin, this bond is broken (~2.83 Å) and replaced by an exocyclic B \leftarrow N dative bond from the pyridine or quinuclidine N-atom to the B-atom (1.64 Å) (*Fig.2a*). The adducts, thus, show a bicyclo[3.3.3]undecane skeleton in which the NC₃ and BO₃ fragments deviate from the eclipsed arrangement by ~ 33°, *i.e.* the approximate symmetry is lowered to C_3 (*Fig.2b*). The differences in the overall conformations of III and IV are accompanied by changes in some other distances and angles [2].

Table 6 shows the geometry around the B-atom in boron-nitrilotriacetate [7], III, and nitrilotriethanol-borate (NTE-B) [8], together with the basicity of the O donor atoms. Boron-nitrilotriacetate, the weakest O-donor, shows the most pyramidalized BO_3 -fragment and the shortest B–N bond; nitrilotriethanol-borate, the strongest O-donor, shows the most planar BO_3 -fragment. Complex III is intermediate in its O-basicity, but its B–N bond is too long to fit into the correlation; a value of 1.64 Å, as found in the less strained adducts III-quin or IV, would fit much better. Possibly, the B–N bond in III is elongated as a consequence of angle strain in the five-membered rings, where the

Atom	X	у	2	$U_{\rm iso}$ or $U_{\rm eq}$
N	1.1311(4)	0.7523(2)	0.2475(1)	3.3(1)
В	1.3646(6)	0.7286(3)	0.2620(2)	4.1(2)
O(1)	1.3809(3)	0.7187(2)	0.3528(1)	5.4(1)
O(2)	1.4902(3)	0.8153(2)	0.2260(1)	4.7(1)
O(3)	1.3691(3)	0.6395(2)	0.2138(2)	5.4(1)
C(11)	1.2136(4)	0.7395(2)	0.3907(2)	3.7(2)
C(12)	1.0657(4)	0.7597(2)	0.3362(2)	3.1(1)
C(13)	0.8864(5)	0.7831(2)	0.3639(2)	4.0(2)
C(14)	0.8574(5)	0.7855(3)	0.4519(2)	5.0(2)
C(15)	1.0043(6)	0.7652(3)	0.5066(2)	5.0(2)
C(16)	1.1824(5)	0.7413(3)	0.4776(2)	4.7(2)
C(21)	1.3712(5)	0.8753(2)	0.1884(2)	3.8(2)
C(22)	1.1687(4)	0.8457(2)	0.1985(2)	3.4(1)
C(23)	1.0283(5)	0.8978(3)	0.1648(2)	4.7(2)
C(24)	1.1007(7)	0.9827(3)	0.1189(2)	6.0(2)
C(25)	1.3029(7)	1.0124(3)	0.1077(2)	5.9(2)
C(26)	1.4412(6)	0.9599(3)	0.1423(2)	4.9(2)
C(31)	1.1853(5)	0.6057(2)	0.1831(2)	4.0(2)
C(32)	1.0418(4)	0.6637(2)	0.1995(2)	3.4(2)
C(33)	0.8458(5)	0.6385(3)	0.1740(2)	4.6(2)
C(34)	0.7956(6)	0.5515(3)	0.1277(2)	6.0(2)
C(35)	0.9378(7)	0.4946(3)	0.1089(2)	6.4(2)
C(36)	1.1342(6)	0.5192(3)	0.1357(2)	5.8(2)
H(13)	0.7657(37)	0.7902(19)	0.3193(16)	1.9(6)
H(14)	0.7324(48)	0.7975(24)	0.4735(21)	4.3(9)
H(15)	0.9740(55)	0.7648(28)	0.5680(25)	6.5(12)
H(16)	1.2907(52)	0.7279(26)	0.5140(22)	5.4(10)
H(23)	0.8523(44)	0.8628(23)	0.1732(20)	4.1(9)
H(24)	1.0184(61)	1.0203(32)	0.0946(28)	7.6(13)
H(25)	1.3533(56)	1.0690(29)	0.0774(26)	6.6(12)
H(26)	1.5790(52)	0.9832(27)	0.1375(23)	5.7(11)
H(33)	0.7316(34)	0.6778(17)	0.1884(15)	1.1(6)
H(34)	0.6546(61)	0.5332(34)	0.1084(27)	7.9(14)
H(35)	0.9071(57)	0.4397(30)	0.0792(25)	6.9(12)
H(36)	1.2218(57)	0.4856(31)	0.1228(25)	6.4(12)

Table 2. Positional and Displacement Parameters $(100 \times U_{eq} \text{ or } 100 \times U_{iso})$ for III(e.s.d.'s in terms of least significant digit)

Table 3. Positional and Displacement Parameters ($100 \times U_{eq}$ or $100 \times U_{iso}$) for IV(e.s.d.'s in terms of least significant digit)

Atom	x	у	Z	$U_{\rm iso}$ or $U_{\rm eq}$
N(1)	0.7521(1)	0.2322(1)	0.7298(1)	3.3(1)
В	0.8716(2)	0.1096(2)	0.6608(2)	3.5(1)
O(1)	0.8232(1)	0.0624(1)	0.7243(1)	3.5(1)
O(2)	0.8156(1)	0.1344(1)	0.5915(1)	3.8(1)
O(3)	0.9311(1)	0.1780(1)	0.6884(1)	3.9(1)
C(11)	0.8055(2)	0.0999(2)	0.7976(1)	3.3(1)
C(12)	0.7712(2)	0.1844(2)	0.8023(1)	3.2(1)
C(13)	0.7585(2)	0.2226(2)	0.8779(2)	4.2(1)
C(14)	0.7776(2)	0.1768(2)	0.9488(2)	5.0(2)
C(15)	0.8079(2)	0.0919(2)	0.9436(2)	4.7(1)
C(16)	0.8211(2)	0.0529(2)	0.8685(2)	3.9(1)

()	Tabl	e 3	(con	t.)
----	------	-----	------	-----

Atom	X	У	Ζ	$U_{\rm iso}$ or $U_{\rm eq}$
C(21)	0.7257(2)	0.1514(1)	0.6018(1)	3.3(1)
C(22)	0.6925(2)	0.1949(1)	0.6700(2)	3.3(1)
C(23)	0.5995(2)	0.2039(2)	0.6799(2)	4.2(1)
C(24)	0.5402(2)	0.1731(2)	0.6218(2)	5.1(2)
C(25)	0.5731(2)	0.1357(2)	0.5515(2)	5.1(2)
C(26)	0.6657(2)	0.1253(2)	0.5413(2)	4.2(1)
C(31)	0.9072(2)	0.2638(1)	0.6821(1)	3.6(1)
C(32)	0.8204(2)	0.2921(2)	0.7020(1)	3.4(1)
C(33)	0.7988(2)	0.3802(2)	0.6960(2)	3.9(1)
C(34)	0.8631(2)	0.4398(2)	0.6725(2)	4.6(1)
C(35)	0.9496(2)	0.4117(2)	0.6535(2)	5.0(2)
C(36)	0.9716(2)	0.3240(2)	0.6581(2)	4.6(1)
N(2)	0.9381(1)	0.0336(1)	0.6256(1)	3.7(1)
C(41)	0.9019(2)	-0.0316(2)	0.5825(2)	4.9(2)
C(42)	0.9519(2)	-0.1026(2)	0.5583(2)	6.0(2)
C(51)	1.0264(2)	0.0297(2)	0.6458(2)	5.4(2)
C(52)	1.0790(2)	-0.0395(2)	0.6223(2)	6.6(2)
C(2)	1.0414(3)	-0.1068(2)	0.5781(2)	6.0(2)
H(13)	0.7361(19)	0.2854(18)	0.8797(18)	4.9(8)
H(14)	0.7712(20)	0.2046(18)	1.0007(18)	5.7(9)
H(15)	0.8260(23)	0.0590(20)	0.9932(20)	6.6(9)
H(16)	0.8425(18)	-0.0069(17)	0.8647(17)	4.3(7)
H(23)	0.5781(20)	0.2342(19)	0.7272(18)	5.5(8)
H(24)	0.4787(20)	0.1796(18)	0.6278(19)	5.5(8)
H(25)	0.5307(22)	0.1161(20)	0.5080(21)	6.7(9)
H(26)	0.6922(19)	0.0977(19)	0.4940(19)	5.4(8)
H(33)	0.7391(19)	0.3991(17)	0.7111(16)	4.5(7)
H(34)	0.8478(20)	0.5013(19)	0.6680(18)	5.3(8)
H(35)	0.9959(20)	0.4538(19)	0.6387(20)	6.5(9)
H(36)	1.0318(20)	0.3019(18)	0.6434(18)	5.0(8)
H(41)	0.8366(21)	-0.0230(19)	0.5672(19)	5.4(8)
H(42)	0.9210(24)	-0.1468(22)	0.5250(22)	7.4(10)
H(51)	1.0478(22)	0.0793(20)	0.6800(19)	5.9(9)
H(52)	1.1392(26)	-0.0403(23)	0.6417(23)	8.2(11)
H(2)	1.0759(29)	-0.1595(27)	0.5583(25)	9.9(13)

Table 4. Positional and Displacement Parameters ($100 \times U_{eq}$ or $100 \times U_{iso}$) for III-quin(e.s.d.'s in terms of least significant digit)

Atom	x	у	2	$U_{\rm iso}$ or $U_{\rm eq}$
N(1)	0.8976(3)	0.7946(2)	0.3415(2)	4.0(2)
В	0.8646(4)	0.7844(3)	0.1043(3)	3.7(2)
O(1)	1.0135(2)	0.6867(2)	0.0860(2)	4.1(1)
O(2)	0.7346(2)	0.7452(2)	0.1940(2)	3.9(1)
O(3)	0.8576(2)	0.9203(2)	0.1224(2)	4.1(1)
C(11)	1.1101(4)	0.7097(3)	0.1366(3)	4.0(2)
C(12)	1.0569(4)	0.7653(3)	0.2585(3)	4.1(2)
C(13)	1.1612(4)	0.7893(3)	0.3035(4)	5.2(2)
C(14)	1.3178(4)	0.7516(4)	0.2281(4)	6.5(3)
C(15)	1.3705(4)	0.6904(4)	0.1102(4)	6.5(3)
C(16)	1.2681(4)	0.6695(3)	0.0628(3)	5.1(2)
C(21)	0.7524(3)	0.6664(3)	0.2910(3)	3.6(2)
C(22)	0.8300(3)	0.6880(3)	0.3640(3)	3.8(2)

Atom	x	У	Z	$U_{\rm iso}$ or $U_{\rm eq}$
C(23)	0.8431(4)	0.6055(3)	0.4624(3)	4.5(2)
C(24)	0.7759(4)	0.5036(3)	0.4921(3)	5.3(2)
C(25)	0.6980(4)	0.4837(3)	0.4200(3)	5.2(2)
C(26)	0.6849(4)	0.5639(3)	0.3210(3)	4.8(2)
C(31)	0.7764(4)	0.9856(3)	0.2393(3)	3.9(2)
C(32)	0.7943(4)	0.9274(3)	0.3484(3)	4.0(2)
C(33)	0.7099(4)	0.9965(3)	0.4653(3)	5.1(2)
C(34)	0.6088(4)	1.1225(4)	0.4736(4)	6.1(3)
C(35)	0.5920(4)	1.1802(3)	0.3654(4)	5.8(2)
C(36)	0.6754(4)	1.1138(3)	0.2678(3)	4.6(2)
N(2)	0.8469(3)	0.7827(2)	-0.0338(2)	3.7(1)
C(41)	0.8540(4)	0.6457(4)	-0.0699(3)	5.1(2)
C(42)	0.8410(5)	0.6425(3)	-0.1987(3)	6.2(2)
C(51)	0.6945(4)	0.8777(3)	-0.0281(3)	5.0(2)
C(52)	0.6722(5)	0.8746(4)	-0.1529(4)	6.3(3)
C(61)	0.9729(4)	0.8238(4)	-0.1372(3)	5.8(2)
C(62)	0.9531(5)	0.8279(4)	-0.2641(3)	6.6(2)
C(2)	0.8163(5)	0.7821(3)	-0.2501(3)	5.8(2)
H(13)	1.118(4)	0.831(3)	0.399(3)	6.5(10)
H(14)	1.389(4)	0.768(3)	0.257(3)	6.2(10)
H(15)	1.477(4)	0.663(3)	0.054(3)	6.6(10)
H(16)	1.300(3)	0.634(2)	-0.024(2)	3.2(8)
H(23)	0.902(3)	0.621(3)	0.511(3)	4.1(8)
H(24)	0.781(4)	0.450(3)	0.564(3)	8.2(12)
H(25)	0.651(3)	0.410(3)	0.442(3)	5.9(9)
H(26)	0.635(3)	0.555(3)	0.269(2)	3.8(8)
H(33)	0.721(3)	0.948(3)	0.546(2)	4.0(8)
H(34)	0.550(4)	1.172(3)	0.556(3)	7.8(12)
H(35)	0.523(4)	1.272(3)	0.370(3)	6.0(10)
H(36)	0.670(3)	1.150(3)	0.167(3)	4.2(9)
H(411)	0.955(3)	0.588(3)	-0.069(3)	5.8(10)
H(412)	0.768(5)	0.632(4)	0.003(4)	11.0(15)
H(421)	0.942(4)	0.580(3)	-0.262(3)	8.3(12)
H(422)	0.759(4)	0.611(3)	-0.193(3)	8.7(12)
H(511)	0.615(4)	0.853(3)	0.045(3)	7.0(11)
H(512)	0.691(4)	0.967(3)	-0.004(3)	7.8(11)
H(521)	0.584(4)	0.846(4)	-0.136(3)	8.4(12)
H(522)	0.653(4)	0.958(3)	-0.187(3)	6.5(10)
H(611)	0.967(4)	0.907(3)	-0.107(3)	8.9(12)
H(612)	1.074(5)	0.749(4)	-0.139(3)	10.5(14)
H(621)	0.938(4)	0.916(3)	-0.292(3)	7.9(11)
H(622)	1.056(4)	0.763(3)	-0.330(3)	7.6(11)
H(2)	0.804(4)	0.783(3)	-0.334(3)	5.8(10)

 Table 5. Average Geometries of the Tri- and Bicycloundecane Frameworks of III, III-quin, and IV (bond lengths in Å; bond angles and torsional angles in deg)

	III	III-quin	IV
B-N(1)	1.681(5)	2.845(5)	2.816(4)
N(1)-C(12)	1.470(18) ^a)	1.437(4)	1.434(3)
C(12)-C(11)	1.377(6)	1.387(5)	1.393(4)
C(11)-O(1)	1.356(9)	1.364(4)	1.363(3)
O(1)-B	1.443(16)	1.450(4)	1.451(3)

	III	III-quin	IV
B-N(2)	-	1.643(5)	1.631(4)
C(12)-N(1)-C(22)	116.4(2)	117.7(2)	118.0(2)
B-N(1)-C(12)	101.1(2)	81.2(3)	81.8(2)
N(1)-C(12)-C(11)	109.6(3)	121.4(3)	121.1(2)
N(1)-C(12)-C(13)	127.3(3)	118.9(3)	119.3(2)
C(12)-C(11)-O(1)	115.7(3)	122.0(3)	121.5(2)
C(16)-C(11)-O(1)	124.9(3)	118.3(3)	119.0(2)
C(11)-O(1)-B	109.4(3)	120.5(3)	120.9(2)
O(1)-B-N(1)-(N(2))	103.9(3)	104.1(2)	103.7(2)
O(1)-B-O(2)	114.4(3)	114.2(3)	114.5(2)
B-N(1)-C(12)-C(11)	-3.1(9)	-18.9(28)	-19.7(22)
N(1)-C(12)-C(11)-O(1)	0.0(11)	0.8(45)	2.6(34)
C(12)-C(11)-O(1)-B	3.8(9)	44.9(50)	42.5(39)
C(11) - O(1) - B - N(1)	-5.3(4)	-39.3(29)	38.5(23)
O(1) - B - N(1) - C(12)	5.0(5)	33.0(21)	32.7(16)
O(1)-B-N(2)-C(41)		59.0(31)	(10.8(25)) ^b)

Table 5 (cont.)

^a) E.s.d.'s of the averaged values estimated as $(\frac{1}{3} \sum_{2} \sigma_{i}^{2})^{\frac{1}{2}}$.

b) The smallest of the six torsion angles between an O-B and a pyridine N-C bond.

Table 6. Correlation of the Geometry of the NBO3 Fragment with the Basicity of the O-Donor Atoms

Compound	Basicity of O-donors [pK]	В-О [Å]	О—В—О [°]	О—В—N [°]	B–N [Å]
Boron-nitrilotriacetate [7]	5	1.446	113.4	105.2	1.620
Ш	10	1.443	114.4	103.9	1.681
Nitrilotriethanol-borate [8]	18	1.439	115.5	103.0	1.677

N(1)-C(12)-C(11), C(12)-C(11)-O(1), and C(11)-O(1)-B angles are compressed relative to their values in III-quin, IV (*Table 5*), and also 2,2',2''-trimethoxytriphenylamine [2].

Following *Murray-Rust et al.* [9], the individual B–O and B–N bond lengths of nitrilotriethanol-borate [8], boron-nitrilotriacetate [7], III, IV, and III-quin have been plotted against the corresponding N–B–O angles (*Fig. 3*). They lie close to the modified *Pauling* relationships³):

$$r(\mathbf{B}-\mathbf{N}) = r(\mathbf{B}-\mathbf{N})_0 - c \ln(-3\cos\varphi)$$
$$r(\mathbf{B}-\mathbf{O}) = r(\mathbf{B}-\mathbf{O})_0 - c \ln(4/3 + \cos\varphi)$$

where $r_i(B-N)$ and r(B-O) are the observed bond lengths, φ is the corresponding N-B-O angle and c is a constant with a value of about 0.35 Å [2].

³) Derived from *Pauling*'s bond length/bond order relationship ($r = r_0 - c \ln (n)$, which allows to calculate the length *r* of an arbitrary bond if one knows its bond order n and the length of the corresponding single bond r_0), postulating a conservation of total bond order around a given central atom during any chemical transformations (in our case: $\Sigma n_i = 4$ around the B-atom). See [10].

517

Fig. 1. Atom numbering schemes: a) of the III skeleton (labels are shown for chelate ring No. 1; the numbering of chelate rings No. 2 and No. 3 is analogous); b) of the pyridine ligand; c) of the quinuclidine ligand. The H-atoms carry the number of the C-atoms to which they are bound; if necessary, they are distinguished by an additional '1' or '2'; e.g. C-atom C(41) carries the H-atoms H(411) and H(412).

Fig. 2. a) ORTEP [15] stereodrawing of the III-quin molecule, b) viewed along the molecular 3-fold axis

Fig. 3. Structure correlation of the NBO₃ fragments of 1) nitrilotriethanol-borate [8]; 2) IV; 3) III; 4) III-quin, and 5) boron-nitrilotriacetate [7]

The reference bond length for a B–N bond in a tetrahedral BN₄ fragment, $r(B-N)_0$ equals 1.54 Å (from tetrakis(1-pyrazolyl) borate [11]), whereas r(B-O) is 1.47 Å (from $B(NO_3)_4^-$, $B(OAc)_4^-$ [13], and $B(OH)_4^-$ [14]). The B–N bond in IV seems short (*Fig. 3*), but may be accounted for, if it is assumed that the shortening of bond length observed in going from C(sp³)–C(sp³) to C(sp³)–C(sp²) (about 0.02 Å [16]) applies to B–N bonds as well. Again, the B–N distance in III is clearly seen to be elongated by ~ 0.04 Å (arrow in *Fig. 3*).

The authors are grateful to Prof. J. D. Dunitz for permission to use his diffraction equipment. E. M. thanks the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung for financial support.

REFERENCES

- [1] E. Müller, H. B. Bürgi, Helv. Chim. Acta 1987, 70, 499.
- [2] E. Müller, Thesis, ETH, Zürich, 1982.
- [3] P. Main, L. Lessinger, M. M. Woolfson, G. Germain, J. P. Declerc, MULTAN 77; A System of Computer Programs for the Automated Solution of Crystal Structures from X-ray Diffraction Data.
- [4] XRAY System of Crystallographic Programs, Version 1972, J.M. Stewart, G.J. Kruger, H.L. Ammon, C. Dickinson, S. R. Hall; Computer Science Center, University of Maryland.
- [5] J.D. Dunitz, P. Seiler, Acta Crystallogr., Sect B 1973, 29, 589.
- [6] C. N. O: D. Cromer, J. Mann, Acta Crystallogr., Sect. A 1968, 24, 321; B: J. A. Ibers, Acta Crystallogr. 1957, 10, 86; H: R. F. Stewart, E. Davidson, W. Simpson, J. Chem. Phys. 1968, 423, 3175.
- [7] E. Müller, H. B. Bürgi, Helv. Chim. Acta 1984, 67, 399.
- [8] R. Mattes, D. Fenske, K. F. Tebbe, Chem. Ber. 1972, 67, 399.
- [9] P. Murray-Rust, H. B. Bürgi, J. D. Dunitz J. Am. Chem. Soc. 1975, 97, 921.
- [10] H. B. Bürgi, J. D. Dunitz, Acc. Chem. Res. 1983, 16, 153 and ref. cited therein.
- [11] R.J. Restivo, G. Ferguson, D.J. O'Sullivan, F.J. Lalor, Inorg. Chem. 1975, 14, 3046.
- [12] O.A. D'Yachenko, S.M. Aldoshin, L.O. Atovmyan, K. V. Titova, V. Ya. Rosolovskii, Dokl. Akad. Nauk. SSSR 1978, 238, 1132.
- [13] A.D. Negro, G. Rossi, A. Perotti, J. Chem. Soc., Dalton Trans. 1975, 1232.
- [14] G. Heller, F. Horbat, Z. Naturforsch., B 1977, 32, 989.
- [15] C.K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, 1976.
- [16] International Tables for X-ray Crystallography, Vol. III, 2nd edn., Kynoch Press, Birmingham, 1968.